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This work explores fractal geometrical properties of scalar turbulent interfaces derived
from experimental two-dimensional spatial images of the scalar field in separated shear
layers at large Reynolds numbers. The resolution of the data captures the upper three
decades of scales enabling examination of multiscale geometrical properties ranging
from the largest energy-containing scales to inertial scales. The data show a −5/3
spectral exponent over a wide range of scales corresponding to the inertial range in
fully developed turbulent flows. For the fractal aspects, we utilize two methods as it is
known that different methods may lead to different fractal aspects. We use the recently
developed method for fractal analysis known as the Multiscale-Minima Meshless (M3)
method because it does not require the use of grids. We also use the conventional
box-counting approach as it has been frequently employed in various past studies. The
outer scalar interfaces are identified on the basis of the probability density function
(p.d.f.) of the scalar field. For the outer interfaces, the M3 method shows strong scale
dependence of the generalized fractal dimension with approximately linear variation
of the dimension as a function of logarithmic scale, for interface-fitting reference
areas, but there is evidence of a plateau near a dimension D ∼ 1.3 for larger reference
areas. The conventional box-counting approach shows evidence of a plateau with a
constant dimension also of D ∼ 1.3, for the same reference areas. In both methods,
the observed plateau dimension value agrees with other studies in different flow
geometries. Scalar threshold effects are also examined and show that the internal
scalar interfaces exhibit qualitatively similar behaviour to the outer interfaces. The
overall range of box-counting fractal dimension values exhibited by outer and internal
interfaces is D ∼ 1.2–1.4. The present findings show that the fractal aspects of scalar
interfaces in separated shear layers at large Reynolds number with −5/3 spectral
behaviour can depend on the method used for evaluating the dimension and on
the reference area. These findings as well as the utilities and distinctions of these
two different definitions of the dimension are discussed in the context of multiscale
modelling of mixing and the interfacial geometry.

1. Introduction
The geometrical, and possibly fractal, nature of turbulence continues to be an

unresolved fundamental and practical problem persisting from theoretical proposals
by Mandelbrot (1975) to many subsequent studies (e.g. Antonia & Sreenivasan 1977;
Sreenivasan 1985, 1991; Sreenivasan, Ramshankar & Meneveau 1989; Meneveau &
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Sreenivasan 1991; Anselmet, Djeridi & Fulachier 1994; Dahm & Dowling 1996,
1997, 1998; Dahm & Southerland 1997; Su & Clemens 1999; Catrakis 2000, 2004,
2008; Brethouwer, Hunt & Nieuwstadt 2003; Dasi, Schuerg & Webster 2007;
Bermejo-Moreno & Pullin 2008). Examination and analysis of scalar interfaces
generated especially in large-Reynolds-number flows is important in a wide range
of fundamental problems as well as applications that involve physical phenomena
across the interfaces such as molecular diffusion, chemical reaction, bioluminescence
or electromagnetic wave propagation (Pope 1988, 2000; Joseph & Preziosi 1989;
Sreenivasan 1991, 1999, 2004; Villermaux & Innocenti 1999; Warhaft 2000; Bisset,
Hunt & Rogers 2002; Bilger 2004; Catrakis 2004; Latz et al. 2004; Aguirre & Catrakis
2005; Dimotakis 2005; Schumacher, Sreenivasan & Yeung 2005). Therefore, it is
desirable to develop a general understanding of the physical features of these scalar
interfaces. Additionally, fundamental knowledge of interfacial properties provide clues
to the distribution of physical scales in turbulent flows (Sreenivasan, Prabhu &
Narasimha 1983; Catrakis 2000). Geometrical interfacial properties such as fractal
dimensions are useful for the development of physical models for scale-local and scale-
cumulative quantities, in addition to the spectral behaviour of turbulent phenomena
(Sreenivasan 1991; Trouvé & Poinsot 1994; Schumacher & Sreenivasan 2003). Since
turbulent interfaces are highly irregular and dynamic, there are significant challenges
in their modelling, examination and optimization.

Theoretically, Mandelbrot (1975) was the first to argue that the fractal dimension
of turbulent scalar isosurfaces or scalar interfaces is 8/3 for the Kolmogorov spectral
exponent of −5/3. However, in the subsequent decades of studies, there have been
various reports on fractal dimensions of not only this value but other values and even
scale-dependent fractal dimensions (e.g. Sreenivasan 1991; Catrakis 2000; Dasi et al.
2007). A large number of reports based on box counting have indicated a constant
dimension of approximately 2.35 (e.g. Sreenivasan 1991). However, there are various
other reports that appear to indicate scale-dependent behaviour for the generalized
fractal dimension, i.e. a fractal dimension that depends on scale (e.g. Catrakis, Aguirre
& Ruiz-Plancarte 2002a; Dasi et al. 2007). Possible interpretations of findings of scale
dependence include finite-Reynolds-number effects (e.g. Catrakis 2000), non-fractal
inclusions (e.g. Frederiksen et al. 1997), large-scale effects (Catrakis et al. 2002a) or
non-fractal level crossing statistics (e.g. Catrakis 2000). It is also important to keep
in mind that different definitions of a geometrical, or fractal, dimension can lead to
different results as emphasized, for example, by Sreenivasan (1991).

This paper focuses on geometrical properties of scalar turbulent interfaces derived
from large-Reynolds-number separated shear layers. Three new key elements in this
work are the flow geometry that has not been previously explored for fractal aspects,
the large-Reynolds-number conditions which are higher than many previous studies of
fractals (e.g. Catrakis et al. 2002b) and the use of two different methods for evaluating
the fractal dimension where one of the methods has been recently developed (Catrakis
2008). We show results on the scalar power spectrum and the p.d.f. of the scalar field.
The latter enables identification of scalar thresholds corresponding to upper and lower
outer interfaces, as well as intermediate thresholds corresponding to internal interfaces.
We then show results on the generalized fractal dimension of scalar interfaces using
two different methods for evaluating the dimension as a function of scale. Section 2
gives a description of our experimental facility and imaging technique. Section 3
describes the recently developed method of exploring the geometric behaviour of
interfaces known as the M3 method pioneered by Catrakis (2008) which is based on
earlier theoretical work in this field (Catrakis 2000). Section 4 presents the results
of the fractal analysis of the shear layer interfaces using both the M3 method and
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Figure 1. Photograph of the variable pressure flow facility at UC Irvine. The main pressure
vessel is visible in the right part of the photograph. It has a large interior and cross section,
extensive optical access and a quick-release door, to facilitate investigations of turbulent
flows at variable pressures. Combined with laser and camera diagnostics, this facility enables
high-resolution imaging of separated shear layers at large Reynolds numbers. The blow-down
wind tunnel and test section are housed inside the main vessel.

the box-counting method. In Section 4, we will see that the M3 method reveals
scale-dependent behaviour in the generalized fractal dimension of the shear layer
interfaces depending on the choice of the reference region utilized to contain the
interfaces. However, the results using traditional box counting demonstrate evidence
of fractal constant-dimension behaviour for the scalar interfaces. The effects of scalar
threshold are also examined using both the M3 method and the box-counting method.
Finally, Section 5 discusses the key results and makes concluding remarks.

2. Experimental facility and procedure
The UC Irvine variable-pressure flow facility, utilized in the present investigations,

can be seen in detail in figure 1. This facility allows experiments to be conducted at
elevated test section pressures, in the range 1 � p � 20 atm, which allows higher signal-
to-noise ratio flow imaging than would be possible at atmospheric or sub-atmospheric
pressures. For imaging techniques based on laser-induced fluorescence, such as the
method presently used and described in this section, the resulting image signal-to-noise
ratio is sufficiently high to enable an interface-based examination of the turbulent
shear layers generated in the facility. This is due to the increased local density of air
molecules as a result of conducting the experiment at higher operating pressures.

The laboratory facility primarily consists of a blow-down wind tunnel contained
inside a large variable-pressure vessel. The main vessel, in which the wind tunnel
is housed, is oriented upright and is shown on the right side of figure 1. The gas
reservoir, which supplies fluid to the wind tunnel, is oriented horizontally and is
shown on the left side of figure 1. The maximum supply pressure of the reservoir
is 3000 psi or 200 atm. The maximum operating pressure of the vessel is 300 psi or
20 atm. For the flow conditions used in this experiment, the Reynolds number based
on the visual thickness of the flow field is Re ∼ 6 × 106. A schematic illustration of
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Figure 2. Schematic illustration showing the separated free shear layer. The larger box
indicates the part of the flow that is shadowgraphed and the smaller box indicates the
part of the scalar field of the shear layer that is imaged with laser-induced fluorescence.

the separated shear layer geometry is shown in figure 2 which indicates the region of
the flow that is shadowgraphed and the region of the scalar field that is imaged with
laser-induced fluorescence as discussed further below. The large scale of the shear
layer at the laser-induced-fluorescence imaging location is the visual thickness which
is L ∼ 0.1 m.

The main vessel is 8 feet in height and 4 feet in diameter, easily enabling two people
to stand in the interior when reconfiguring the test section or the tunnel. The main
vessel has a quick-release entrance door of 2 feet in diameter that facilitates access
in and out of the vessel. Both the main pressure vessel and the reservoir vessel are
‘U’-stamp ASME rated. Two ellipsoidal cap sections, for each vessel, are welded at the
two ends of the main cylindrical sections. Both vessels including the quick-release door
mechanism were fabricated by Melco Steel. The main vessel and the reservoir vessel
are equipped with NPT (National Pipe Tread) fittings for attachments of pressure
gauges, vacuum lines, transducers and any other instrumentation necessary for flow
management.

Extensive optical access to the interior of the main pressure vessel is available
through five high-optical-quality spectrosil windows each with a diameter of 10 in
and a thickness 3.25 in. Four of the five windows are vertical optical ports located
on the four sides of the main pressure vessel. The fifth window is a horizontal optical
port located on the top of the vessel. Combined with laser diagnostics, this facility is
capable of quantitative high-resolution imaging of high-Reynolds-number turbulent
flow fields.

The flow geometry currently examined is a separated turbulent shear layer (see
figure 2) which is an example of a separated flow relevant in a wide range of
problems (Kyrazis 1993; Morris & Foss 2003). In the present experiments, the flow is
directed vertically upwards through the pressure vessel and the beam propagation is
horizontal. The separated shear layer represents a basic flow configuration of interest
for future studies where more complex flow geometries can be observed. For example,
while separated flows over curved surfaces have an unsteady separation point, the
sharp 90◦ corner defined in the present flow geometry ensures a fixed separation
point. Studies of the unforced separated shear layer can provide valuable baseline
information to evaluate the extent to which active flow control techniques including
large-scale disorganization or regularization can be effective (Jumper & Fitzgerald
2001; Stanek et al. 2002).

In the present study, acetone vapour molecularly mixed in air is utilized. To generate
the purely gaseous air/acetone mixture, a stream of air is passed through a liquid bath
of acetone using the bubbling method (Thurber & Hanson 1999). The air/acetone
mixture is supplied to the reservoir which is pressurized before each experimental
run. The main vessel is pressurized with filtered air at p ∼ 3 atm prior to releasing
the reservoir gas into the blow-down tunnel and test section. The acetone-vapour
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Figure 3. Example of a shadowgraph of the separated shear layer in the present flow facility.

concentration in air is regulated by controlling the mass flux of air through the
bubbling unit. In the present experiments, an acetone-vapour concentration of 2 %
by volume is generated in order to ensure negligible absorption of the laser energy,
similar to previous experiments on laser-induced fluorescence (Catrakis et al. 2002),
and in order to maintain conditions below the lower flammability limit of acetone.
The resulting Schmidt number is Sc ∼ 1 for the present case of purely gaseous acetone
premixed in air that subsequently undergoes turbulent mixing in the shear layer with
pure air. A shadowgraph of the separated shear layer is shown in figure 3.

The ultraviolet beam used in the present study is generated from a pulsed Nd:YAG
laser. The illumination source employed is a moderate-energy laser system (Spectra
Physics Model INDI 40–10) which produces 70 mJ ultraviolet light pulses at a
wavelength of 266 nm. This wavelength corresponds to frequency quadrupling at the
fourth harmonic of the illumination sources fundamental infrared 1064 nm output.
The laser beam is shaped into a laser sheet with a width of 15 cm and a thickness
of 150 μm. A parabolic mirror ensures that the laser sheet that is produced from
the lens is of parallel extent before it propagates through the test section. The laser
sheet is directed through the quartz windows of the pressure vessel and into the high
Reynolds number separated shear layer. The laser-sheet orientation corresponds to
a streamwise slice of the turbulent shear layer. The extent of the laser sheet that
illuminates the shear layer is approximately 15 cm × 15 cm. The laser-sheet width of
15 cm corresponds to the downstream extent of the imaged flow field. The large-
scale transverse extent of the shear layer at the imaging location is approximately
L ∼ 10 cm. The incident laser sheet excites the acetone vapour in the air to generate
visible (blue) light through fluorescence. The elevated test section pressure of p ∼ 3 atm
results in a significant increase in the fluorescence signal, relative to atmospheric or
sub-atmospheric test-section pressures, in agreement with previous studies (Thurber
& Hanson 1999).

The laser-induced fluorescence signal is recorded on a high-resolution digital
intensified charge-coupled device (CCD) camera with ∼ 10002 pixels. The camera
system is oriented along a direction normal to the incident laser sheet and, therefore,
perpendicular to the laser propagation direction. The digital camera system employed
is an intensified CCD camera by Stanford Photonics (Mega-10Z) with enhanced
sensitivity in the blue visible spectrum. This enables the recording of the two-
dimensional spatial slices of the acetone-vapour concentration field in the turbulent
shear layer. An example of a scalar field image is shown in figure 4. The fluorescence-
signal images are normalized and calibrated pixel-by-pixel using post-run images
recorded at uniform concentration as well as pre-run images that correspond to
pure air images in the test section. The normalization and calibration procedure is
similar to the methods described in a previous study (Catrakis et al. 2002). In the
present experiments, the turbulent mixing of the free stream gas (which contains a
mixture of acetone and air) with the ambient gas (pure air) generates the scalar field
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Figure 4. Example of a high-resolution image of the scalar field in a large-Reynolds-number
separated shear layer recorded with laser-induced fluorescence.

Figure 5. This image is an example of a visualization of figure 4, to further illustrate the
geometrical complexity of the scalar field and interfaces, in which the dark regions of the
image represent interfaces where the scalar in-plane gradient is large relative to the scalar
in-plane gradient in the brighter regions.

corresponding directly to the acetone-vapour concentration field. Figure 5 shows a
further visualization of the scalar field and interfaces from the example in figure 4
by depicting increasing values of the in-plane scalar gradient with darker regions, in
order to illustrate the geometrical complexity of the scalar variations.

It is important to note that the laser-induced fluorescence images are high-
resolution images, but they are not fully resolved. Because of this, this study does
not include analysis of mixing or concentration below the resolution scale. Based
on the Re ∼ 6 × 106 and visual thickness L ∼ 0.1m of the separated shear layer at
the imaging location, the Kolmogorov scale is estimated as λK ∼ L/Re3/4 ∼ 0.82 μm.
Therefore, the total range of scales is L/λK ∼ 1.3 × 105 whereas our images capture
the range of scales L/150 μm ∼ 0.67 × 103. Therefore, the full range of scales spans
approximately five decades, however, our imaging resolution (1000 × 1000 pixels),
captures the three upper decades since the pixel resolution scale is 0.1 mm. As we will
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show later in section 4, despite the lack of full resolution, the resolved range of scales
is able to capture a part of the spectral −5/3 inertial behaviour.

3. The Multiscale-Minima Meshless (M3) method for generalized
fractal analysis

Our objects of interest are scalar interfaces which are the isosurfaces, or contours
in two dimensions, of a passive scalar turbulent field:

c(x, t) = constant, (3.1)

where c is a scalar of interest for any point location x and at any time t. These
scalars could represent such quantities as the concentration of certain species, density
or refractive index. After identification of a scalar interface, analysis of geometrical
properties can be conducted (e.g. Sreenivasan & Prasad 1989; Prasad & Sreenivasan
1990; Catrakis et al. 2002; Dasi et al. 2007). An important concept in the study of
the geometric multiscale behaviour of turbulence is the analysis of fractional (non-
integral) dimensions, also known as fractal dimensions, pioneered by the studies of
Mandelbrot (1975) and Sreenivasan & Meneveau (1986) as discussed in § 1.

It is important to keep in mind that different definitions and methods for evaluating
the fractal dimension can give different results (e.g. Sreenivasan 1991). In this study,
we will utilize two methods for evaluating the fractal dimension where one method
is the M3 method recently developed by Catrakis (2008) and the other method is
conventional box counting that has been frequently used in the past. The typical
starting point in many earlier studies of the fractal aspects of turbulence has been
the assumption of statistical self-similarity. This assumes that there is an object
in d-dimensional Euclidean space with a constant fractal dimension Dd . However,
more generally, one may need to consider the generalized fractal dimension Dd(λ)
as a function of scale λ as has been pointed out in several studies (e.g. Takayasu
1982; Catrakis 2000) because such a generalized fractal dimension does not constrain
a priori the behaviour to be self-similar. This allows therefore for possible scale
dependence, and includes self-similarity as a special case, so that

0 � Dd(λ) � d. (3.2)

Whereas in many practical cases the generalized fractal dimension is at least as large
as the topological dimension dt , i.e. Dd(λ) � dt , we note that there are exceptional
cases where the dimension at certain scales may be smaller than the topological
dimension such as a circle in a large reference area which can have dimension values
less than unity, for example, at large scales for a sufficiently large reference area.
For turbulent scalar interfaces, however, unless one utilizes an extraordinarily large
reference area, we expect that dt � Dd(λ) � d .

There are various definitions and methods for evaluating the dimension. It is
known that different definitions and different methods may give different results for
the dimension (e.g. Sreenivasan 1991). Nevertheless, a frequently used approach for
studying fractal dimensions in many studies of turbulence has focused on a method
known as box counting (e.g. Sreenivasan 1991; Lane-Serff 1993; Dalziel, Linden &
Youngs 1999). This method requires the formation of partitions subdividing a square
or rectangular reference region into successively smaller boxes. The box count Nd(λ)
is then computed which measures the number of partition boxes that cover the object
at a specified box scale λ. This is then used to evaluate the fractal dimension as
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Figure 6. This schematic illustration demonstrates the basic idea of the M3 method for
evaluating the generalized fractal dimensions of an object. Random point locations, denoted
by crosses, are chosen within the reference area and the shortest distance to the nearest part
of the object are computed as indicated by the arrows. Since the M3 is a meshless approach,
the reference boundary can have any imposed shape. In this example a circular boundary is
shown.

follows:

Dd(λ) = −d log Nd(λ)/d log λ. (3.3)

This conventional method, therefore, requires the generation of multiple grids, or
meshes, at certain resolution scales and then at other refined resolution scales to
evaluate the fractal dimension.

An alternative method has been recently developed known as the M3 method
(Catrakis 2008). The M3 method is a purely meshless method for evaluating fractal
dimensions as functions of scale. Validation of this method with theoretical examples
is available in the study by Catrakis (2008) with extensive comparisons to conventional
box counting. An interesting feature of the M3 method is that it does not require
any type of grid or box subdivision, thus allowing for a purely meshless evaluation of
the generalized fractal dimension as a function of scale. The rest of this section will
include a brief description of the M3 method. A full description of the M3 method
can be found in the study of Catrakis (2008). Figure 6 shows a schematic illustartion
of the basic idea of the M3 method which is to identify the shortest-distance scale
from a random location to the nearest part of the object of interest, i.e. to the nearest
part of the scalar interface.

We will first consider the shortest-distance p.d.f. gd(λ), which is defined as the p.d.f.
that λ is the shortest distance from a point at a random location inside a reference
region, to the nearest part of an object which in this study is a turbulent interface. The
associated probability gd(λ)dλ is the probability that the shortest distance is within
the range [λ, λ + dλ]. The shortest-distance p.d.f. gd(λ) can then be normalized as
follows: ∫ L

0

gd(λ) dλ =

∫ λc

0

gd(λ) dλ = 1, (3.4)

where 0 � λ� L includes the range of shortest-distance scales for a bounded reference
region. The length L represents a characteristic large scale in the bounded reference
region. The scale λc is defined as the largest shortest-distance scale at gd(λ) is non-zero.
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From this it is clear that λc is expected to be smaller than the largest characteristic
scale L.

Let us consider the cumulative probability integral which is also the distribution
function of the shortest-distance scales. This can be viewed as the integral of all the
probabilities of all the shortest-distance scales in the range 0 � λ� λ′. Then the total
geometrical probability that the shortest distance is any scale smaller than or equal to
λ/2 is the same as the geometrical probability that a randomly located segment of size
λ contains a part of the object. Thus, in one-dimensional, the cumulative distribution
function of the shortest-distance scales is equal to the coverage fraction F1(λ):∫ λ̃

0

g1(λ
′) dλ′ = F1(λ). (3.5)

We recall that the coverage fraction F1(λ) is defined as the probability that a randomly
placed λ-sized segment contains a part of the interface. The shortest-distance scale in
the upper limit in (3.5) is, by the geometrical argument stated above, therefore half
the size of the one-dimensional coverage element:

λ̃ = λ/2. (3.6)

The key relation in (3.5) holds because the total of all the possible probabilities of
the shortest-distance scales in the range 0 � λ� λ̃, from a random location, is precisely
the probability that a randomly placed one-dimensional λ-sized box contains a part
of the turbulent interface (Catrakis 2008).

Using the coverage-fraction definition of the generalized fractal dimension, i.e.

D1(λ) ≡ 1 − d log F1(λ)

d log λ
(3.7)

and substituting (3.5), we obtain the generalized fractal dimension as a function of
the shortest-distance p.d.f.:

D1(λ) = 1 − λ̃g1(λ̃)∫ λ̃

0
g1(λ̃′) dλ̃′

. (3.8)

Figure 7 shows an example of the M3 method with 3000 random points chosen
within a circular domain. Note that in multiple dimensions (d > 2), the equivalence
in (3.5) does not hold because the shape of the coverage element needed would be
multi-dimensional, for example it would be a disc for d = 2 or a sphere for d = 3,
instead of a box. This shows that the concept of a box-based generalized fractal
dimension is limiting due to the constraints placed by the shape of the box. One
way of resolving this issue is, as stated before, choose a disc, spheres or another
multi-dimensional shape as a coverage element. However, a better choice would be
one that avoids entirely any constraints as to the shape of the coverage element. This
can be done through use of the new purely meshless generalized fractal dimension
function Dd(λ) which is defined in any d-dimensional space. We can start by defining
the shortest-distance cumulative probability function which we denote as Gd(λ) as
follows:

Gd(λ) =

∫ λ

0

gd(λ
′) dλ′. (3.9)

The derivative of the shortest-distance p.d.f. gd(λ) is the shortest-distance
p.d.f.: gd(λ) = d Gd(λ)/dλ. The cumulative distribution function Gd(λ) at a scale λ
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Figure 7. Example of the M3 method with 3000 randomly chosen points within a circular
reference area. The random points are represented by small crosses similar to figure 6 and
the nearest location to the object is shown using a line segment. The random locations are
uniformly chosen within the reference area. The resulting picture shows clusters of locations
associated with the multiscale minimal positions for the object.

corresponds to the probability that a random location is at most a distance λ from
the nearest part of the object. Its limiting values are Gd(λ → 0) = 0 and Gd(λ → L) = 1
at the smallest and largest scales, respectively. Recalling our result for d = 1 from
(3.7) and (3.8) and stating it in terms of the cumulative p.d.f. we can then define by
direct analogy a new generalized fractal dimension Dd(λ) for the general case, i.e. for
any Euclidean dimension d, as follows:

Dd(λ) ≡ d − λ̃gd(λ̃)∫ λ̃

0
gd(λ̃′)dλ̃′

= d − d log Gd(λ̃)

d log λ̃
. (3.10)

This can be expressed in terms of the scales greater than or equal to by using the
normalization equation (3.4), as follows:

Dd(λ) = d − λ̃gd(λ̃)

1 −
∫ L

λ̃
gd(λ̃′) dλ̃′

. (3.11)

This expression is directly invertible

gd(λ̃) =
d − Dd(λ)

λ̃
exp

{
−

∫ L

λ̃

[d − Dd(λ̃)]
dλ̃′

λ̃′

}
. (3.12)

Extensive testing of the M3 method and comparisons to the conventional box-counting
technique are available in the study by Catrakis (2008) in which the M3 method has
been formulated, including exact analytical examples illustrating the theory of the M3

method. It is important to note that since the M3 method requires placing random
points within a specified reference region, some care needs to be placed in choosing
a reference region. One possible choice is to take the entire image as the reference
region. However, this may affect the resulting dimension. This is due to the fact that
there may be a large number of locations outside the fluid interface, which would
contribute more to the shortest-distance p.d.f. when the size of the reference region
is larger compared to the characteristic large-scale size of the physical interface or
object. For transverse slices of flows such as jets which have closed interfaces, this
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Figure 8. This figure depicts the ensemble-averaged normalized scalar power spectrum E of
the separated shear layer, with evidence of the k−5/3 inertial range, where Nmax and N0 denote
the concentration values for the pure free stream and ambient fluids, respectively.

ambiguity can be easily avoided if one defines the region enclosed by the interface
as the reference region. For shear-layer images, since the interfaces are not closed
contours, a reasonable choice for the reference area appears is an interface-fitting
reference area of rectangular shape surrounding each individual interface or pair of
interfaces. Other choices are possible such as using the interface itself as the boundary,
as illustrated for jet flows (e.g. Catrakis 2008).

4. Results on the fractal geometry of separated shear layer interfaces
In this section, we will present the results of our generalized fractal dimension

analysis of turbulent shear layers using the M3 method and the box-counting method.
The variable pressure flow facility at UC Irvine was used, as described in § 2, to
generate single stream shear layers which were imaged using laser-induced florescence
techniques. Spectral analysis of these images shows that even though the images are
not fully resolved one is able to capture three decades of scales ranging from the
largest scale to smaller scales including a part of the inertial scales. Figure 8 is a
plot of the ensemble-averaged power spectrum of the separated shear-layer scalar
fields. From this figure one can see that these flow conditions produce the k−5/3 power
distribution law as expected for fully developed turbulent flows.

Figure 9 is a plot of the ensemble-averaged p.d.f. of the separated shear layer scalar
field. The two main locations of local minima in the p.d.f. are used to identify the outer
interfaces of the separated shear layer as upper and lower interfaces corresponding
respectively to the higher and lower concentration thresholds indicated in figure 9.
In figure 10, examples of upper and lower interfaces are shown. An asymmetric
intermediate peak in the scalar p.d.f. around (N − N0)/(Nmax − N0) = 0.6, where N
denotes the concentration with Nmax and N0 denoting the free stream and ambient
concentration values, respectively, is evident which is consistent with previous studies
and is due to the spatial growth of the flow and the corresponding asymmetry in
entrainment (e.g. Dimotakis 2005). Figure 11 is a surface plot that assists in visualizing
the variations of the normalized threshold values and their relation to the interfaces.

Figure 12(a) shows the ensemble-averaged generalized fractal dimension results
using the M3 method for the combined upper and lower interfaces using the
interface-fitting rectangular reference area as described below. Figure 12(b) shows
an example of the combined upper and lower interfaces extracted and the reference
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Nmax corresponding to the pure free stream air/acetone mixture.

(a) (b)

Figure 10. Examples of individual upper and lower outer interfaces in the separated shear
layer identified from the scalar fields. Image (a) depicts an example of an upper interface and
image (b) shows an example of a lower interface.
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Figure 11. This is an example of a surface plot depicting the variations of the scalar field in
the separated shear layer. The z -axis of this plot represents the normalized scalar threshold
value defined in the x -axis of figure 9. The x - and y-axes of this image are streamwise and
transverse positions in the shear layer, respectively, normalized by the maximum corresponding
extent of the imaged scalar field region.
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Figure 12. (a) Ensemble-averaged generalized fractal dimension plot of shear layer upper
and lower interfaces using the M3 method with 100 000 random point locations and using an
interface-fitting reference area. (b) Example of upper and lower interfaces with the reference
area outlined.
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Figure 13. Ensemble-averaged generalized fractal dimension versus logarithmic normalized
scale for upper and lower interfaces of the separated shear layer using the M3 method with a
reduced number of 10 000 random point locations, in order to explore the effect of the number
of point locations on the dimension, and using the interface-fitting reference area in figure 12.

area outlined. We utilized 100 000 random point locations for each realization to
generate this generalized fractal dimension plot as well as the related plot in figure 15
discussed below. We denote as interface-fitting rectangular area the boundary region
identified by bounding the upper and lower interfaces of the shear layer image and
bounding the upstream and downstream sides of the image. The generalized fractal
dimension in figure 12 shows strong scale dependence using the M3 method, with
evidence of an approximately linear dependence of the generalized fractal dimension
on the logarithmic scale. Specific models for such behaviour have been proposed (e.g.
Queiros-Conde 2003). More generally, it is known that such scale dependence can
also be the result of finite-Reynolds-number effects (e.g. Catrakis 2000, Catrakis et al.
2002).

Figure 13 shows the effect of reducing the number of point locations from 100 000
to 10 000 in the M3 method. Comparing figures 12 and 13, we see evidence of
convergence with the 100 000 point locations as compared to 10 000 point locations
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Figure 14. (a) Ensemble-averaged generalized fractal dimension plot of shear layer upper
and lower interfaces using the M3 method with 100 000 random point locations and a
large reference area to explore the effect of increasing the reference area on the dimension.
(b) Example of outer interfaces with the reference area outlined.
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Figure 15. Ensemble-averaged generalized fractal dimension versus logarithmic normalized
scale for upper and lower interfaces of the separated shear layer using the M3 method with a
reduced number of 10 000 random point locations, in order to explore the effect of the number
of point locations on the dimension, for the larger reference area used in figure 14.

since the fluctuations in the dimension versus logarithmic normalized scale diminish
significantly from 10 000 point locations to 100 000 point locations. In order to explore
the possible effect of the reference area on the generalized fractal dimension in the M3

method, figures 14(a) and 15 show the generalized fractal dimension for 100 000 point
locations and for 10 000 point locations, respectively, using a larger reference area as
depicted in figure 14(b). The effect of this increased reference area seems to be the
creation of an approximate plateau near a dimension D ∼ 1.3, i.e. fractal behaviour
based on the M3 method. We conclude therefore that the behaviour based on the M3

method can depend on the reference area utilized.
To compare the M3 method to the conventional box-counting technique, figure 16(a)

shows the ensemble-averaged generalized fractal dimension using box counting for
upper and lower interfaces with interface-fitting rectangular boundaries. As with the
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Figure 16. (a) Ensemble-averaged fractal dimension plot for shear layer upper and lower
interfaces using the box-counting method using an interface-fitting rectangular reference area.
(b) Example of one of the shear layer interface pairs used in the analysis with the reference
area outlined.
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Figure 17. (a) Ensemble-averaged fractal dimension plot of shear layer upper and lower
interfaces using the box-counting method using a larger reference area. (b) Example of one of
the shear layer interface pairs used in the analysis with the reference area outlined.

previous plots, figure 16(b) depicts an example of upper and lower interfaces with the
reference area outlined. The corresponding plot of the generalized fractal dimension
shows evidence of fractal behaviour with a plateau near a dimension D ∼ 1.3 over a
range of intermediate scales in the shear layer. In order to explore the possible effect
of the reference area on the generalized fractal dimension using the box-counting
technique, figure 17 was created. The effect of this change in reference area appears
to increase the range of scales in which fractal behaviour is seen but without affecting
the plateau value of the dimension.

Using the M3 method and the box-counting method, we also show some sample
results for individual realizations of turbulent interfaces with regard to the generalized
fractal dimension. As observed above in the context of figures 12 and 14, we see that
larger reference areas can affect the dimension behaviour especially for the M3
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Figure 18. Examples of fractal dimension plots for individual realizations of the lower
interfaces in the shear layer using the M3 method and an interface-fitting reference area
made to fit closely around the interface in each case.

method. For this reason, we show some sample results for individual scalar interface
realizations with the interface-fitting rectangular reference area around each interface.
Figures 18 and 19 show examples of the fractal dimension plots for individual
realizations of shear layer interfaces extracted from the shear layer images, using
the M3 method and the box-counting method, respectively. For reference, the scalar
interface and reference area are depicted in the plot. As with the ensemble-averaged
results shown in figures 12 and 14, we see in the individual-realization sample results
in figures 18 and 19 that there is strong scale dependence of the dimension on the
basis of the M3 method but there is evidence of a constant dimension on the basis of
the box-counting method. In both cases, as expected in comparison to the ensemble-
averaged results, there are fluctuations in the dimension behaviour depending on the
particular realization.

To explore scalar threshold effects on the generalized fractal dimension, i.e. for
internal interfaces as well as for outer interfaces, we have used both the M3 method
and the box-counting method with an interface-fitting rectangular boundary region for
interfaces at different scalar thresholds. Figures 20 and 21 show the ensemble-averaged
dimension of interfaces for various threshold levels, using the M3 method and the
box-counting method, respectively. Figures 20(a) and 21(a) show the dimension
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Figure 19. Examples of fractal dimension plots for individual realizations of lower interfaces
in the shear layer using the box-counting method and an interface-fitting rectangular reference
area around each interface, corresponding to the results by the M3 method in figure 18.

behaviour for the lower outer interfaces, using the scalar threshold as indicated
in the scalar p.d.f. in figure 9, for the M3 method and for the box-counting method,
respectively. Figures 20(b) and 21(b) show the dimension behaviour for internal
interfaces at an intermediate normalized scalar threshold value of 0.2, based on
the values in the scalar p.d.f. in figure 9, for the M3 method and for the box-
counting method, respectively. Figures 20(c) and 21(c) are for internal interfaces at
a different intermediate normalized scalar threshold value of 0.6, based on the scalar
p.d.f. in figure 9, for the M3 method and for the box-counting method, respectively.
Figures 20(d) and 21(d) are generated for the upper outer interfaces using the scalar
threshold as in the scalar p.d.f. in figure 9, for the M3 method and for the box-counting
method, respectively. These results are overall qualitatively similar with the results
presented above in figures 12 and 16. The box counting results in figures 21(a–d)
and 23 discussed below indicate a range of values of fractal dimension D ∼ 1.2–1.4
depending on the scalar threshold.

Figures 22 and 23 depict the entire three-dimensional plots of the generalized
fractal dimension as a function of logarithmic scale and normalized scalar threshold
value, using the M3 method and the box-counting method, respectively. These surface
plots indicate that across a wide range of scalar thresholds the dimension behaviour
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Figure 20. Examples of ensemble-averaged fractal dimension plots of shear layer interfaces
using the M3 method and an interface-fitting rectangular reference around each interface for
various concentration thresholds. (a) The average fractal dimension for the lower concentration
threshold; (d ) the behaviour for the upper threshold value; (b) and (c) plots of the fractal
dimension for intermediate threshold values.

is qualitatively similar to the results obtained in figures 12 and 16, respectively, for
the M3 method and for the box-counting method. Thus, in figure 22, the M3 method
shows evidence of scale-dependent behaviour in the generalized fractal dimension
for various scalar thresholds. An approximately linear variation of the generalized
fractal dimension as a function of logarithmic scale is evident for various thresholds
in figure 22 using the M3 method. In contrast, the box-counting results in figure 23
indicate a nearly constant dimension with values in the range D ∼ 1.2–1.4 depending
on the threshold for a wide range of scalar thresholds.

Thus, as also observed above in the comparison between figures 12 and 16, there
appears to be evidence of fractal behaviour on the basis of the box-counting method
in figure 23 but evidence of strong scale dependence is found on the basis of the
M3 method in figure 22. At least for the present flow conditions, these two methods
give different results on the dimension behaviour. We note, as discussed above, that
each of the two methods has its own merits. The box-counting method has been
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Figure 21. Examples of ensemble-averaged fractal dimension plots of shear layer interfaces
using the box-counting method and an interface-fitting reference boundary for interfaces at
various concentration thresholds. (a) The average fractal dimension for the lower concentration
threshold; (d ) the behaviour for the upper threshold value; (b) and (c) plots of the fractal
dimension for intermediate threshold values.

frequently used in previous studies by various researchers and thus it is important
to have box-counting results for comparisons to prior works. In this regard, we note
that the box-counting dimension value range of D ∼ 1.2–1.4 in this study is in good
agreement with various prior studies (e.g. Sreenivasan 1991). The recently developed
M3 method (Catrakis 2008) eliminates the need for grids or box subdivisions and
thus the presently observed strong scale dependence based on the M3 method, for
the interface-fitting boundary regions, may be interpreted as behaviour free from
any effects of box subdivisions. We have observed above that increasing the size of
the reference region in the M3 method for the present data can result in behaviour
indicative of fractal constant-dimension behaviour. Regarding the general issue of
geometrical scale dependence versus self-similarity, we note that it has been shown
theoretically that scale dependence can be the result of finite-Reynolds-number effects
that can mask intrinsic power-law behaviour even for several decades of power-law
scaling (Catrakis 2000).
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Figure 22. A three-dimensional plot of generalized fractal dimension computed using the
M3 method versus λ/L (in Log scale) versus normalized scalar threshold defined as
(N − N0)/(Nmax − N0) where N0 is the lower scalar value and Nmax is the upper scalar
value. Notice the general trend of scale-dependent generalized fractal dimension is present at
various scalar threshold values.
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Figure 23. A three-dimensional plot of box-counting results, corresponding to the M3 method
results in figure 22, of the generalized fractal dimension as a three-dimensional plot showing
the dimension versus λ/L (in Log scale) versus the normalized scalar threshold defined as
(N − N0)/(Nmax − N0) where N0 is the lower scalar value and Nmax is the upper scalar value.

5. Conclusions
In this study an investigation of the geometrical properties of scalar turbulent

interfaces derived from large-Re separated shear layer scalar field data was conducted.
The three new key elements in this work are that the separated shear layer geometry
has not been previously explored for fractal aspects, the large-Reynolds-number
conditions are higher than many previous studies of fractals (e.g. Catrakis et al.
2002), as well as the use and comparison of both the box-counting method and
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the Multiscale-Minima Meshless method with the latter recently developed (Catrakis
2008). In the present study, the power spectrum of experimentally generated shear
layers showed evidence of the k−5/3 spectral behaviour. Outer scalar interfaces were
identified on the basis of the p.d.f. of the scalar field. For the fractal aspects, we
utilized two methods as it is known that different methods may lead to different
fractal aspects. We used the recently developed method for fractal analysis known
as the M3 method because it does not require the use of grids. We also used
the conventional box-counting approach as it has been frequently employed in
various past studies and thus we compared the dimension behaviour between the two
methods.

For the outer interfaces, our results using the M3 method revealed strong scale
dependence of the generalized fractal dimension with approximately linear variation
of the generalized fractal dimension as a function of logarithmic scale, for interface-
fitting reference areas. However, for larger reference areas, evidence of an approximate
plateau with a dimension of D ∼ 1.3 is found for the M3 method. Using the
conventional box-counting approach, we also find evidence of a plateau with a
constant dimension of D ∼ 1.3, without a noticeable effect of the reference area, that
is in agreement with previous studies that also used box counting. The effects of scalar
threshold were also examined and our findings for internal interfaces are qualitatively
similar to those for outer interfaces. The overall range of fractal dimension values
is D ∼ 1.2–1.4 depending on scalar threshold. The present findings indicate that the
fractal aspects of scalar interfaces in separated shear layers at large Reynolds number
with −5/3 spectral behaviour are dependent on the method employed for identifying
the dimension, with scale dependence for the M3-based dimension and self-similarity
for the box-based dimension.

It is important to appreciate that there are various definitions of the geometrical,
or fractal, dimension that each have their own merits and are known to give different
results for given objects (e.g. Sreenivasan 1991). Different definitions of the dimension
have different utilities that can be employed for multiscale modelling of the interfacial
geometry. In the present work, we have focused on two definitions of the dimension
for the following reasons. The M3-based dimension eliminates the need for grids and
can be theoretically related to the p.d.f. of generalized level crossing scales as shown
in a recent study in which the method has been formulated and tested (Catrakis
2008). The box-counting dimension has been widely used in various studies of fractal
dimensions in turbulence and thus it is important, for comparison purposes, to have
results available for it as well. It should be kept in mind that fractal dimensions
in turbulence are useful for quantifying the area of isosurfaces or perimeter of
level sets, for identifying the extent of self-similarity or scale dependence, and for
probing the distribution of interfacial scales. Different definitions of the dimension
relate in different ways to the isosurface area, to the extent of self-similarity or scale
dependence and to the level crossing scales (e.g. Sreenivasan 1991; Catrakis 2008), so
that the particular modelling choice as well as utility of the definition of the dimension
depends therefore on its connection to the isosurface area, to self-similarity or scale
dependence and to the level crossing scales. Theoretical aspects of these connections
are available in the studies of Sreenivasan (1991) and Catrakis (2008).

We are grateful to S. Piatrovich, A. Freeman, J. Shockro, A. Wachtor, R. Sokolowski
and R. Aguirre for their contributions at various stages of this work. We are also
grateful to the Referees for their insightful comments.



410 F. R. Zubair and H. J. Catrakis

REFERENCES

Aguirre, R. C. & Catrakis, H. J. 2005 On intermittency and the physical thickness of turbulent
fluid interfaces. J. Fluid Mech. 540, 39–48.

Anselmet, F., Djeridi, H. & Fulachier, L. 1994 Joint statistics of a passive scalar and its dissipation
in turbulent flows. J. Fluid Mech. 280, 173–197.

Antonia, R. A. & Sreenivasan, K. R. 1977 Log-normality of temperature dissipation in a turbulent
boundary layer. Phys. Fluids 20 (11), 1800–1804.

Bermejo-Moreno, I. & Pullin, D. I. 2008 On the non-local geometry of turbulence. J. Fluid Mech.
603, 101–135.

Bilger, R. W. 2004 Some aspects of scalar dissipation. Flow Turbul. Combust. 72, 93–114.

Bisset, D. K., Hunt, J. C. & Rogers, M. M. 2002 The turbulent/non-turbulent interface bounding
a far wake. J. Fluid Mech. 451, 381–410.

Brethouwer, G., Hunt, J. C. R. & Nieuwstadt, F. T. M. 2003 Micro-structure and Lagrangian
statistics of the scalar field with a mean gradient in isotropic turbulence. J. Fluid Mech. 474,
193–225.

Catrakis, H. J. 2000 Distribution of scales in turbulence. Phys. Rev. E 62, 564–578.

Catrakis, H. J. 2004 Turbulence and the dynamics of fluid interfaces with applications to mixing
and aero-optics. In Recent Research Developments in Fluid Dynamics, vol. 5, pp. 115–158.
Transworld Research Network Publishers.

Catrakis, H. J. 2008 The multiscale-minima meshless (M3) method: a novel approach to level
crossings and generalized fractals with applications to turbulent interfaces. J. Turbul. 9(22),
1–25.

Catrakis, H. J., Aguirre, R. C. & Ruiz-Plancarte, J. 2002a Area-volume properties of fluid
interfaces in turbulence: scale-local self-similarity and cumulative scale dependence. J. Fluid
Mech. 462, 245–254.

Catrakis, H. J., Aguirre, R. C., Ruiz-Plancarte, J., Thayne, R. D., McDonald, B. A. & Hearn,

J. W. 2002b Large-scale dynamics in turbulent mixing and the three-dimensional space-time
behaviour of outer fluid interfaces. J. Fluid Mech. 471, 381–408.

Dahm, W. J. A. & Southerland, K. B. 1997 Experimental assessment of Taylor’s hypothesis and
its applicability to dissipation estimates in turbulent flows. Phys. Fluids 9 (7), 2101–2107.

Dalziel, S. B., Linden, P. F. & Youngs, D. L. 1999 Self-similarity and internal structure of
turbulence induced by Rayleigh–Taylor instability. J. Fluid Mech. 399, 1–48.

Dasi, L. P., Schuerg, F. & Webster, D. R. 2007 The geometric properties of high-Schmidt-number
passive scalar isosurfaces in turbulent boundary layers. J. Fluid Mech. 588, 253–277.

Dimotakis, P. E. 2005 Turbulent mixing. Annu. Rev. Fluid. Mech. 37, 329–356.

Frederiksen, R. D., Dahm, W. J. A. & Dowling, D. R. 1996 Experimental assessment of fractal
scale similarity in turbulent flows. Part 1. One-dimensional intersections. J. Fluid Mech. 327,
35–72.

Frederiksen, R. D., Dahm, W. J. A. & Dowling, D. R. 1997 Experimental assessment of fractal
scale similarity in turbulent flows. Part 2. Higher-dimensional intersections and non-fractal
inclusions. J. Fluid Mech. 338, 89–126.

Frederiksen, R. D., Dahm, W. J. A. & Dowling, D. R. 1998 Experimental assessment of fractal
scale similarity in turbulent flows. Part 4. Effects of Reynolds and Schmidt numbers. J. Fluid
Mech. 377, 169–187.

Joseph, D. D. & Preziosi, L. 1989 Heat waves. Rev. Mod. Phys. 61, 41–73.

Jumper, E. J. & Fitzgerald, E. J. 2001 Recent advances in aero-optics. Prog. Aerospace Sci. 37,
299–339.

Kyrazis, D. 1993 Optical degradation by turbulent free shear layers. Optical Diagnostics in Fluid
and Thermal Flow (ed. S. S. Cha & J. D. Trolinger), pp. 170–181. Society of Photo-Optical
Instrumentation Engineers.

Lane-Serff, G. F. 1993 Investigation of the fractal structure of jets and plumes. J. Fluid Mech. 249,
521–534.

Latz, M. I., Juhl, A. R., Ahmed, A. M., Elghobashi, S. E. & Rohr, J. 2004 Hydrodynamic
stimulation of dinoflagellate bioluminescence: a computational and experimental study. J.
Exp. Bio. 207, 1941–1951.

Mandelbrot, B. B. 1975 On the geometry of homogeneous turbulence, with stress on the fractal
dimension of the isosurfaces of scalars. J. Fluid Mech. 72 (2), 401–416.



On separated shear layers and fractal geometry 411

Meneveau, C. & Sreenivasan, K. R. 1991 The multifractal nature of turbulent energy dissipation.
J. Fluid Mech. 224, 429–484.

Morris, S. & Foss, J. 2003 Turbulent boundary layer to single-stream shear layer: the transition
region. J. Fluid Mech. 494, 187–221.

Pope, S. B. 1988 Evolution of surfaces in turbulence. Intl J. Engng Sci. 26, 445–469.

Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.

Prasad, R. R. & Sreenivasan, K. R. 1990 Quantitative three-dimensional imaging and the structure
of passive scalar fields in fully turbulent flows. J. Fluid Mech. 216, 1–34.

Queiros-Conde, D. 2003 A diffusion equation to describe scale- and time-dependent dimensions of
turbulent interfaces. Proc. R. Soc. Lond. A 459, 3043–3059.

Schumacher, J. & Sreenivasan, K. R. 2003 Geometric features of the mixing of passive scalars at
high Schmidt numbers. Phys. Rev. Lett. 91, 4501–4504.

Schumacher, J., Sreenivasan, K. R. & Yeung, P. K. 2005 Very fine structures in scalar mixing.
J. Fluid Mech. 531, 113–122.

Sreenivasan, K. R. 1985 On the fine-scale intermittency of turbulence. J. Fluid Mech. 151, 81–103.

Sreenivasan, K. R. 1991 Fractals and multifractals in fluid turbulence. Annu. Rev. Fluid. Mech. 23,
539–600.

Sreenivasan, K. R. 1999 Fluid turbulence. Rev. Mod. Phys. 71, S383–S395.

Sreenivasan, K. R. 2004 Possible effects of small-scale intermittency in turbulent reacting flows.
Flow Turbul. Combust. 72, 115–141.

Sreenivasan, K. R. & Meneveau, C. 1986 The fractal facets of turbulence. J. Fluid Mech. 173,
357–386.

Sreenivasan, K. R., Prabhu, A. & Narasimha, R. 1983 Zero-crossings in turbulent signals. J. Fluid
Mech. 137, 251–272.

Sreenivasan, K. R. & Prasad, R. R. 1989 New results on the fractal and multifractal structure of
the large Schmidt number passive scalars in fully turbulent flows. Physica D 38, 322–329.

Sreenivasan, K. R., Ramshankar, R. & Meneveau, C. 1989 Mixing, entrainment and fractal
dimensions of surfaces in turbulent flows. Proc. R. Soc. Lond. A 421, 79–108.

Stanek, M., Raman, G., Ross, J. A., Odedra, J., Peto, J., Alvi, F. & Kibens, V. June 2002 High
frequency acoustic suppression: the role of mass flow, the notion of superposition, and the
role of inviscid instability. In American Institute of Aeronautics and Astronautics (AIAA) 8th
Aeroacoustics Conference and Exhibit, AIAA Paper 2002–2404, Breckenridge, CO.

Su, L. K. & Clemens, N. T. 1999 Planar measurements of the full three-dimensional scalar
dissipation rate in gas-phase turbulent flows. Exp. Fluids 27, 507–521.

Takayasu, H. 1982 Differential fractal dimension of random walk and its applications to physical
systems. J. Phys. Soc. Jpn. 51, 3057–3064.

Thurber, M. C. & Hanson, R. K. 1999 Pressure and composition dependences of acetone laser-
induced fluorescence with excitation at 248, 266, and 308 nm. Appl. Phys. B 69, 229–240.
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